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P-ADIC LINEAR GROUPS WITH ERGODIC 
AUTOMORPHISMS 

BY 
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ABSTRACT 

Let k be a locally compact, totally disconnected, nondiscrete field, and let G be 
a Lie group over k satisfying suitable conditions which depend on the 
characteristic of k. It is shown that G is compact if it admits a bicontinuous 
automorphism which is ergodic with respect to Haar measure. 

Let G be a locally compact group and T a bicontinuous automorphism of G. 

The automorphism T is called ergodic if every Borel subset A of G such that 

T(A) = A must either be null or have null complement with respect to Haar 

measure on G. It has been conjectured that only compact groups can possess 

ergodic automorphisms, and there is considerable supporting evidence for this 

conjecture. See, for example, [7] and the earlier references listed there. In 

particular, it was shown in [7] that if G is a Zariski-connected linear algebraic 

group defined over the locally compact, totally disconnected, nondiscrete field k 

such that the unipotent radical of G is defined over k and T is an automorphism 

of G also defined over k, then the group G(k) of rational points of G over k is 

compact with respect to the usual locally compact topology if the restriction of T 

to G(k) is ergodic. In this paper we shall extend this last result in several ways. 

Firstly, we shall show that G(k) as above must be compact without the 

assumption that the ergodic automorphism T of G(k) be the restriction of a 

k-automorphism of G. Moreover, G(k) need not be connected and may be 

replaced by a sufficiently large subgroup of G(k) (Theorem 2). In fact, when k is 

of characteristic zero, we may substitute for G(k) any Lie group over k with a 

finite-dimensional, continuous representation over k whose kernel is, say, 

compact or solvable (Theorem 1). 
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1. Preliminaries 

Throughout this paper k is a nondiscrete, locally compact, totally discon- 

nected field, /< an algebraic closure of k, and I 'l  a multiplicative, discrete 

valuation on k. We also denote by I" I the canonical extension of this valuation to 

any finite extension of k. 

Suppose G is a Zariski-connected linear algebraic group defined over k whose 

unipotent radical RuG is also defined over k. We shall denote by G* the 

subgroup of G(k)  generated by the subgroups V(k), as V runs through the 

unipotent radicals of parabolic k-subgroups of G. The group G* is normal in 

G(k), and G* ={e} if G is reductive and anisotropic over k. When G is 

reductive, we shall also write G + for G * to conform with the notation in [4]. 

For standard notation and results on Lie groups and linear algebraic groups 

see [6] and [2], [3], respectively. 

We need the following two results, which appear as corollaries 1.3 and 1.7 

in [7]. 

LEMMA 1. Let G be a locally compact group which possesses an ergodic 

automorphism. If  G is the union of an increasing sequence of compact open 

subgroups, then G is compact. 

LEMMA 2. If the locally compact group G has a finite normal series of closed 

subgroups whose successive quotients are all unions of increasing sequences of 
compact open subgroups, then G is also the union of such an increasing sequence. 

LEMMA 3. Let G be a ~r-compact, locally compact, totally disconnected group 

with a closed, solvable, normal subgroup N. If  the set of elements of G which lie in 

a compact subgroup is dense in G, then N is union of an increasing sequence of 
compact open subgroups. 

PROOF. Write 

N = N ° D N 1 3  . . .  3 N " = { e } ,  

where each N j is a closed normal subgroup of G such that NJ-I/N j is abelian, 

1 =< j _<- n. Our lemma will follow from Lemma 2 if we show that each N~-1/N ~ is 

the union of an increasing sequence of compact open subgroups. Since NJ-~/N j 

is abelian, totally disconnected and or-compact, this is equivalent to showing that 

every element of NJ-1/N j lies in a compact subgroup. 

Fixing j and passing to the quotient group G / N  j we are reduced to 

considering the case where N is abelian, which we now assume. Let L be the set 

of elements of N which lie in a compact subgroup. Then L is an open subgroup 

of N which is normal in G. Thus N ' =  N/L is a discrete, abelian, torsion-free, 
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normal subgroup of G ' =  G/L. Let x E N'. There exists a compact open 

subgroup H of G '  such that H fq N ' =  {e} and every element of H centralizes x, 

and our hypothesis on G implies that for some h E H, the product xh lies in a 

compact subgroup of G'. But then there exists a positive integer n such that 

x "h n = (xh)n E H, whence x n ~ H N N'--- {e}. Thus x = e, and we have shown 

that L = N as desired. 

LEMMA 4. Let x E GL~(k ). Then x is contained in a compact subgroup of 
GLn (k ) if and only i[ all o[ its eigenvalues have valuation one. 

PROOF. If K is a finite extension of k, then GLn(k) is a closed subgroup of 

GLn(K). Hence we may replace k by a finite extension over which x may be put 

in upper triangular form, so let us assume x is upper triangular. Let B be the 

group of upper triangular matrices in GLn(k ), let T and U be the subgroups of B 

consisting of all diagonal and of all unipotent upper triangular matrices, 

respectively, and let To be the subgroup of T of all elements whose diagonal 

entries are units in the valuation ring of k. Then To is compact, and U has a 

normal series of closed subgroups whose successive quotients are isomorphic to 

the additive group of k. 'Thus To" U is the union of an increasing sequence of 

compact open subgroups by Lemma 2. If all of the eigenvalues of x have 

valuation one, then x E To" U, so x lies in a compact subgroup of B. Conversely, 

To is the largest compact subgroup of T = B/U.  Thus if x is contained in a 

compact subgroup of B, then x E To" U. 

LEMMA 5. The set of elements of GL,(k  ) which are contained in a compact 

subgroup is open and closed in GL.(k  ). 

PROOF. Let x E GL,(k)  and let h be an eigenvalue of x. Then )t belongs to an 

extension K of degree n of k, so [ ;t I = [ NK/k (h)[ TM. Thus the set of valuations of 

eigenvalues of elements of GL. (k) is discrete. Furthermore, it is standard that if 

P C  k[X] and Q is another element of k[X] all of whose coefficients are 

sufficiently close in k to those of P, then the valuations of the roots of P and of Q 

are the same [1, ch. 6, §3]. It follows that the set of elements of GLn(k) whose 

eigenvalues have any prescribed valuations is open, and therefore also closed. 

Our lemma now follows from Lemma 4. 

2. Ergodic automorphisms (k of characteristic zero) 

Suppose that k is of characteristic zero, so that k is a finite separable 

extension of the field Qp of p-adic numbers for some prime p. There is then a 

functor Rk/op of "restriction of scalars" which maps the category of Lie groups 
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over k to the category of p-adic Lie groups [5, 5.14], [6, p. 99]. If G is a Lie 

group over k, then Rk/o~G is topologically isomorphic to G. Thus if G, G '  are Lie 

groups over k, any continuous homomorphism p: G ~ G'  may be viewed as a 

continuous homomorphism of R~/o~G into R~/o~G'. If G ' =  C,L,(k), then 

Rk/o~G' may be canonically identified to a closed subgroup of GL~,(Q~), where 

d = [k: Q~]. Therefore if p is a continuous finite-dimensional representation of 

G over k, then it yields one of R~o~G over Qr We recall that if k = Qp, then 

every continuous homomorphism of Lie groups over k is analytic [6, III, §8, no. 

1, th. 1] and every closed subgroup of a Lie group over k is a Lie group over k 

(loc. cit. no. 2, th. 2). 

LEMMA 6. Let k be of characteristic zero. Let G be a tr-compact Lie group over 
k and p : G ~ GL, (k) a faithful continuous representation of G over k. Suppose 
that the set of elements of G which are contained in a compact subgroup is dense in 
G. Then G is the union of an increasing sequence of compact open subgroups. 

PROOF. The above remarks show that the restriction of scalars reduces us to 

the case where k = Qp, and then p is a morphism of Lie groups. We let L(G) 
denote the Lie algebra of G, and we distinguish three cases: 

a) L(G) = {0}. Then G is a countable, discrete, periodic group, and it suffices 

to show G is locally finite. But since p is faithful this follows from a classical 

result of Schur [8] (see also [9, cor. 4.9]). 

b) L(G) is semi-simple. Let M be the unique connected algebraic subgroup 

of GL,(k) with Lie algebra dp(L(G))Q~k. Then M is normalized by p(G)  and 

the group M(k) of k-rational points of M is a closed subgroup of GL,(k) which 

is a Lie group over k with Lie algebra dp(L(G)). If H is a compact open 

subgroup of G, then p(H) is a Lie subgroup of (?,L~(k) with Lie algebra 

dp(L(G)) (recall k = Qp), so p(H) n M(k) is open in M(k) [6, III, §7, no. 1, th. 

2], whence so is p(G)n  M(k). Thus p(G)n  M(k) is closed in M(k), hence in 

GL~(k), the group N = p-l(M(k)) is an open, normal subgroup of G and p I N is 

a topological isomorphism of N onto p ( G ) n  M(k). 
Let ~7/denote the normalizer of M in GL,(k). There is a k-rational linear 

representation a of /~ /wi th  kernel M [2, th. 5.6]. Since p (G)  C/~/, the map t~ op 

yields a faithful representation of G/N, and it follows from a) that G/N is the 

union of an increasing sequence of finite subgroups. Thus, to complete the proof 

in case b), it suffices to show that N, or equivalently p(G)  O M(k), is compact. 

Let MI,.. . ,  M, be the isotropic simple quotients of M over k and zr~: M---~ Me 

the canonical projection (1 -<_ i ~ t). The group Li = 7r~(p(N)) is open (1 --5_ i =< t); 

let us show it is compact. By Lemma 5 every element of p(N), hence of L,, lies in 
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a compact group. The group M;- is closed in M~(k) [6, 6.14], hence L, n M~ is an 

open subgroup of M? which is the union of its compact subgroups. It is then a 

proper open subgroup of M S, since the latter contains the k-rational points of a 

k-split torus and hence an element which generates an infinite discrete subgroup 

of M~. But it is known that every proper open subgroup of M~ is compact [4, 

9.10], hence L~ is compact. It follows that the image of p(N) under the mapping 

zr = zq × . . . x er,: M---~ MI × . . . ×M, 

is compact. The kernel Q of zr is anisotropic over k, hence Q ( k )  is compact and 

so is p(N)  n Q(k) .  Consequently p(N)  is compact, which completes the proof of 

the lemma in the case b). 

c) L ( G )  has a nonzero radical r. Let a be the algebraic hull of dp(r) and A 

the unique connected algebraic subgroup of GLn (/~) with Lie algebra a. Then A 

is solvable and normalized by p(G), hence N = p-~(A(k))  is a closed, normal, 

solvable subgroup of G. Since a n  dp (L (G) )Ddp( r ) ,  we have (dp)-~(a)Dr, 

whence L(N)  = r. Thus G / N  is a semi-simple Lie group over k with Lie algebra 

L(G)/r .  Clearly G / N  is tr-compact and the union of its compact subgroups is 

dense. There exists a k-rational linear representation/3 of the normalizer B of 

A in G L , ( k )  with kernel A [2, th. 5.6.]. Then /3 op is a faithful, continuous 

representation of G / N  over Qp. Thus G / N  satisfies the hypotheses of our 

lemma, so by b) it is the union of an increasing sequence of compact open 

subgroups. This is then also true for G by Lemmas 2 and 3. 

THEOREM 1. Let k be of characteristic zero. Let G be a tr-compact Lie group 

over k with a finite-dimensional, continuous representation p over k such that ker p 

is either the union of an increasing sequence of compact open subgroups or 

solvable. If G admits an ergodic automorphism, then G is compact. 

PROOF. Let T be an ergodic automorphism of G. If H is a compact open 

subgroup of G, then U ,~zT" (H)  is open, non-empty and invariant under T, 

hence dense in G. It follows that G/kerp  satisfies the hypotheses of Lemma 6, 

hence G/kerp  is the union of an increasing sequence of compact open 

subgroups. Moreover, if ker p is solvable, it is also such a union by Lemma 3. 

The theorem now follows from Lemmas 1 and 2. 

3. Ergodic automorphisms (k of arbitrary characteristic) 

LEMMA 7. Let G be a reductive, connected linear algebraic group defined over k, 

and suppose that the derived group ~ G  of G has k-rank zero. Then G(k  ) has a 

unique maximal compact subgroup. 
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PROOF. Let S be the maximal k-split torus in the radical R of G, and let D be 

the group generated by ~ G  and the maximal anisotropic k-torus in R. Then 

G = S .  D, and the canonical mapping S x D ~ G is a central isogeny. Thus 

S(k )D(k )  is a closed cocompact sulJgroup of G(k)  [4, prop. 3.19], and D is 

anisotropic, so D(k)  is compact. Hence G(k) /S(k)  is compact. 

Let X1," • ", X~ E X(G)k be chosen so that their restrictions to S form a basis 

of X ( S ) @  Q (d = dim S). This can be done because the group of restrictions of 

elements of X(G)k to S has finite index in X(S).  Let R* denote the 

multiplicative group of strictly positive real numbers, and define 
p : G(k)---~(R*) d by 

pfx) = (I x , f x ) l , . . . ,  I x (x) I). 

The map p is a continuous homomorphism whose image is discrete and 

isomorphic to Z u. The group K = ker p is an open subgroup of G (k) containing 

all compact subgroups of G(k).  The quotient K / ( S ( k ) n  K) is then an open, 

hence compact, subgroup of G(k)/S(k) .  Since S(k)  n K is compact, we see that 

K is compact, which proves the lemma. 

THEOREM 2. Let G be a linear algebraic group defined over k, G o its (Zariski) 

identity component, and suppose that R,G ° is also defined over k. Let H be a 

closed subgroup of G(k ) which contain~ (GO) * and admits an ergodic automor- 
phism. Then H is compact. 

PROOF. We shall again show that H is the union of an increasing sequence of 

compact open subgroups. Since H n G O has finite index in H, we may assume G 

to be connected (Lemma 2). Let 7 r :G- - -~G '=  G/R.G be the canonical 

homomorphism. Since (RuG)(k )CH and ¢r(G*) = G '÷, we see that 7r(H) is a 

closed subgroup of G'(k) containing G '÷. By Lemma 5 every element of H lies 

in a compact subgroup. Then G '÷ contains no elements generating infinite 

discrete subgroups, hence G'* = {e}. Thus the k-rank of the derived group of G '  

is zero, so by Lemma 7 G ' (k)  has a unique maximal compact subgroup K. It 

follows that ¢r(H) CK. Now, RuG is trigonalizable over k, so (RuG)(k) is the 

union of an increasing sequence of compact open subgroups. The theorem is 

then proved upon applying Lemmas 1 and 2. 
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